minimal cut - definição. O que é minimal cut. Significado, conceito
Diclib.com
Dicionário ChatGPT
Digite uma palavra ou frase em qualquer idioma 👆
Idioma:

Tradução e análise de palavras por inteligência artificial ChatGPT

Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:

  • como a palavra é usada
  • frequência de uso
  • é usado com mais frequência na fala oral ou escrita
  • opções de tradução de palavras
  • exemplos de uso (várias frases com tradução)
  • etimologia

O que (quem) é minimal cut - definição

THEOREM IN OPTIMIZATION THEORY
Maximum flow minimum cut theorem; Max flow in networks; Maximum flow/minimum cut theorem; Max flow min cut theorem; Minimal cut; MFMC; Max-flow, mincut theorem; Maximum flow, minimum cut theorem; Max flow min cut; Maxflow-mincut; Min cut max flow; Max-flow min-cut; Max-flow-min-cut; Max-Flow Min-Cut theorem
  • Each black node denotes a pixel.
  • A network formulation of the project selection problem with the optimal solution

Max-flow min-cut theorem         
In computer science and optimization theory, the max-flow min-cut theorem states that in a flow network, the maximum amount of flow passing from the source to the sink is equal to the total weight of the edges in a minimum cut, i.e.
Minimal pair         
TWO WORDS THAT DIFFER IN ONLY ONE ELEMENT OF THEIR PRONUNCIATION
Minimal pairs; Minimal Pair; Contrasting pair
In phonology, minimal pairs are pairs of words or phrases in a particular language, spoken or signed, that differ in only one phonological element, such as a phoneme, toneme or chroneme, and have distinct meanings. They are used to demonstrate that two phones represent two separate phonemes in the language.
minimal pair         
TWO WORDS THAT DIFFER IN ONLY ONE ELEMENT OF THEIR PRONUNCIATION
Minimal pairs; Minimal Pair; Contrasting pair
n. (ling.) to produce; represent a minimal pair

Wikipédia

Max-flow min-cut theorem

In computer science and optimization theory, the max-flow min-cut theorem states that in a flow network, the maximum amount of flow passing from the source to the sink is equal to the total weight of the edges in a minimum cut, i.e., the smallest total weight of the edges which if removed would disconnect the source from the sink.

This is a special case of the duality theorem for linear programs and can be used to derive Menger's theorem and the Kőnig–Egerváry theorem.